250 research outputs found

    On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms

    Full text link
    Uniquely closable skeletons of lambda terms are Motzkin-trees that predetermine the unique closed lambda term that can be obtained by labeling their leaves with de Bruijn indices. Likewise, uniquely typable skeletons of closed lambda terms predetermine the unique simply-typed lambda term that can be obtained by labeling their leaves with de Bruijn indices. We derive, through a sequence of logic program transformations, efficient code for their combinatorial generation and study their statistical properties. As a result, we obtain context-free grammars describing closable and uniquely closable skeletons of lambda terms, opening the door for their in-depth study with tools from analytic combinatorics. Our empirical study of the more difficult case of (uniquely) typable terms reveals some interesting open problems about their density and asymptotic behavior. As a connection between the two classes of terms, we also show that uniquely typable closed lambda term skeletons of size 3n+13n+1 are in a bijection with binary trees of size nn.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Dynamic programming for graphs on surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2O(k·log k). Our approach combines tools from topological graph theory and analytic combinatorics.Postprint (updated version

    Dynamic Programming for Graphs on Surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2^{O(k log k)} n steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called "surface cut decomposition", generalizing sphere cut decompositions of planar graphs introduced by Seymour and Thomas, which has nice combinatorial properties. Namely, the number of partial solutions that can be arranged on a surface cut decomposition can be upper-bounded by the number of non-crossing partitions on surfaces with boundary. It follows that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in 2^{O(k)} n steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve most previous results in this direction.Comment: 28 pages, 3 figure

    Laws relating runs, long runs, and steps in gambler's ruin, with persistence in two strata

    Full text link
    Define a certain gambler's ruin process \mathbf{X}_{j}, \mbox{ \ }j\ge 0, such that the increments εj:=XjXj1\varepsilon_{j}:=\mathbf{X}_{j}-\mathbf{X}_{j-1} take values ±1\pm1 and satisfy P(εj+1=1εj=1,Xj=k)=P(εj+1=1εj=1,Xj=k)=akP(\varepsilon_{j+1}=1|\varepsilon_{j}=1, |\mathbf{X}_{j}|=k)=P(\varepsilon_{j+1}=-1|\varepsilon_{j}=-1,|\mathbf{X}_{j}|=k)=a_k, all j1j\ge 1, where ak=aa_k=a if 0kf1 0\le k\le f-1, and ak=ba_k=b if fk<Nf\le k<N. Here 0<a,b<10<a, b <1 denote persistence parameters and f,NN f ,N\in \mathbb{N} with f<Nf<N. The process starts at X0=m(N,N)\mathbf{X}_0=m\in (-N,N) and terminates when Xj=N|\mathbf{X}_j|=N. Denote by RN{\cal R}'_N, UN{\cal U}'_N, and LN{\cal L}'_N, respectively, the numbers of runs, long runs, and steps in the meander portion of the gambler's ruin process. Define XN:=(LN1ab(1a)(1b)RN1(1a)(1b)UN)/NX_N:=\left ({\cal L}'_N-\frac{1-a-b}{(1-a)(1-b)}{\cal R}'_N-\frac{1}{(1-a)(1-b)}{\cal U}'_N\right )/N and let fηNf\sim\eta N for some 0<η<10<\eta <1. We show limNE{eitXN}=φ^(t)\lim_{N\to\infty} E\{e^{itX_N}\}=\hat{\varphi}(t) exists in an explicit form. We obtain a companion theorem for the last visit portion of the gambler's ruin.Comment: Presented at 8th International Conference on Lattice Path Combinatorics, Cal Poly Pomona, Aug., 2015. The 2nd version has been streamlined, with references added, including reference to a companion document with details of calculations via Mathematica. The 3rd version has 2 new figures and improved presentatio

    Services within a busy period of an M/M/1 queue and Dyck paths

    Get PDF
    We analyze the service times of customers in a stable M/M/1 queue in equilibrium depending on their position in a busy period. We give the law of the service of a customer at the beginning, at the end, or in the middle of the busy period. It enables as a by-product to prove that the process of instants of beginning of services is not Poisson. We then proceed to a more precise analysis. We consider a family of polynomial generating series associated with Dyck paths of length 2n and we show that they provide the correlation function of the successive services in a busy period with (n+1) customers

    Varieties of increasing trees

    Get PDF
    Résumé disponible dans les fichiers attaché

    Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces

    Full text link
    The Airy distribution function describes the probability distribution of the area under a Brownian excursion over a unit interval. Surprisingly, this function has appeared in a number of seemingly unrelated problems, mostly in computer science and graph theory. In this paper, we show that this distribution also appears in a rather well studied physical system, namely the fluctuating interfaces. We present an exact solution for the distribution P(h_m,L) of the maximal height h_m (measured with respect to the average spatial height) in the steady state of a fluctuating interface in a one dimensional system of size L with both periodic and free boundary conditions. For the periodic case, we show that P(h_m,L)=L^{-1/2}f(h_m L^{-1/2}) for all L where the function f(x) is the Airy distribution function. This result is valid for both the Edwards-Wilkinson and the Kardar-Parisi-Zhang interfaces. For the free boundary case, the same scaling holds P(h_m,L)=L^{-1/2}F(h_m L^{-1/2}), but the scaling function F(x) is different from that of the periodic case. We compute this scaling function explicitly for the Edwards-Wilkinson interface and call it the F-Airy distribution function. Numerical simulations are in excellent agreement with our analytical results. Our results provide a rather rare exactly solvable case for the distribution of extremum of a set of strongly correlated random variables. Some of these results were announced in a recent Letter [ S.N. Majumdar and A. Comtet, Phys. Rev. Lett., 92, 225501 (2004)].Comment: 27 pages, 10 .eps figures included. Two figures improved, new discussion and references adde

    On the Limits of Analogy Between Self-Avoidance and Topology-Driven Swelling of Polymer Loops

    Full text link
    The work addresses the analogy between trivial knotting and excluded volume in looped polymer chains of moderate length, N<N0N<N_0, where the effects of knotting are small. A simple expression for the swelling seen in trivially knotted loops is described and shown to agree with simulation data. Contrast between this expression and the well known expression for excluded volume polymers leads to a graphical mapping of excluded volume to trivial knots, which may be useful for understanding where the analogy between the two physical forms is valid. The work also includes description of a new method for the computational generation of polymer loops via conditional probability. Although computationally intensive, this method generates loops without statistical bias, and thus is preferable to other loop generation routines in the region N<N0N<N_0.Comment: 10 pages, 5 figures, supplementary tex file and datafil

    Brzozowski Algorithm Is Generically Super-Polynomial Deterministic Automata

    Get PDF
    International audienceWe study the number of states of the minimal automaton of the mirror of a rational language recognized by a random deterministic automaton with n states. We prove that, for any d > 0, the probability that this number of states is greater than nd tends to 1 as n tends to infinity. As a consequence, the generic and average complexities of Brzozowski minimization algorithm are super-polynomial for the uniform distribution on deterministic automata

    On the Commutative Equivalence of Context-Free Languages

    Get PDF
    The problem of the commutative equivalence of context-free and regular languages is studied. In particular conditions ensuring that a context-free language of exponential growth is commutatively equivalent with a regular language are investigated
    corecore